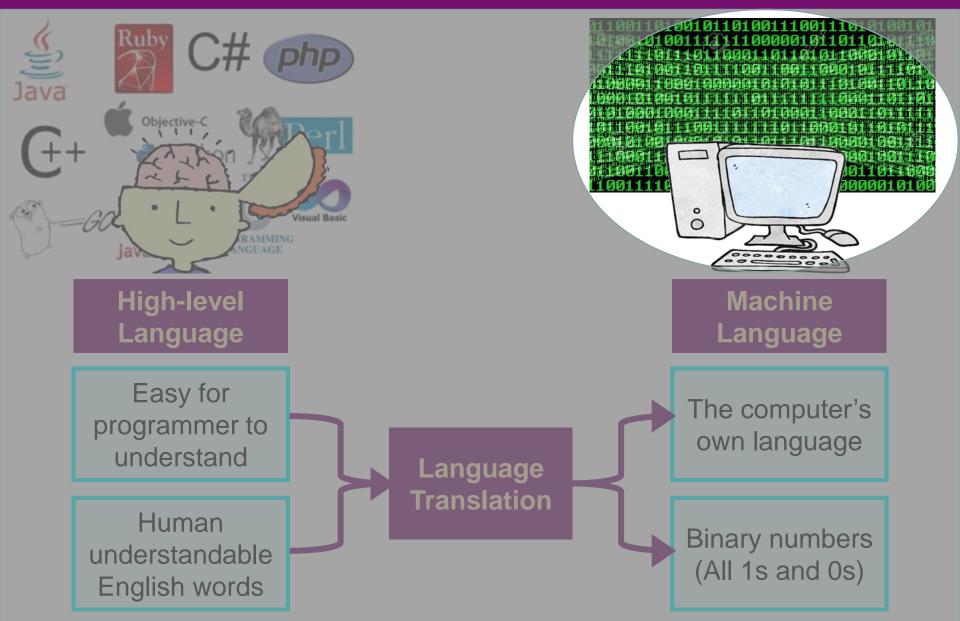


香港中文大學

The Chinese University of Hong Kong

CSCI2510 Computer Organization Lecture 02: Number and Character Representation


Ming-Chang YANG mcyang@cse.cuhk.edu.hk

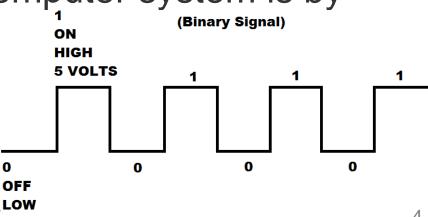
COMPUTER ORGANIZATION AND EMBEDDED SYSTEMS

Reading: Chap. 1.4~1.5, 9.7~9.8

Recall: How to talk to the computer?

Outline

- Number Representation
 - Number Systems
 - Integers
 - Unsigned Integer
 - Signed Integer
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
- Character Representation
 - ASCII


Number Systems

- Common number systems:
 - The *radix* or *base* of the number system denotes the number of digits used in the system.

Binary (base 2)	0	1														
Octal (base 8)	0	1	2	3	4	5	6	7								
Decimal (base 10)	0	1	2	3	4	5	6	7	8	9						
Hexadecimal (base 16)	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Ε	F

- The most natural way in a computer system is by binary numbers (0, 1).
 In (Binary Signal)
 In (Binary Signal)
 - (0, 1) can be represented as
 (off, on) electrical signals.

https://social.technet.microsoft.com/wiki/contents/articles/22118.declaring-numeric-data-types.aspx

Outline

- Number Representation
 - Number Systems
 - Integers
 - Unsigned Integer
 - Signed Integer
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
- Character Representation
 - ASCII

Count to 100 in Decimal!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 The Count to 100 by Ones Song **66 67 68 69 70 71 72 73 74 75 76 77** 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

 $100 = 1 \times 10^2 + 0 \times 10^1 + 0 \times 10^0$

https://www.youtube.com/watch?v=U6BCbH3Vwwk

"Unsigned" Integer Representation

- Consider an *n*-bit (or *n*-digit) vector $B = (b_{n-1} \dots b_1 b_0)_2;$ Denoting the base as a subscript where $b_i = 0 \text{ or } 1$ (binary number) for $0 \le i \le n-1$
 - <u>Most</u> <u>Significant</u> <u>Bit</u> (MSB): b_{n-1} (i.e., the leftmost bit)
 - <u>Least</u> <u>Significant</u> <u>Bit</u> (LSB): b_0 (i.e., the rightmost bit)
- This vector can represent the decimal value for an <u>unsigned integer</u> V(B) in the range 0 to $2^n - 1$, where $V(B) = b_{n-1} \times 2^{n-1} + \dots + b_1 \times 2^1 + b_0 \times 2^0$
- For example, if $B = (1001)_2$, where n = 4 $V(B) = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (9)_{10}$

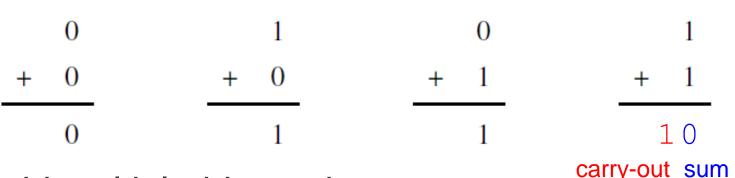
Conversion of Number Systems

(Decimal) ₁₀	(Binary) ₂	(Octal) ₈	(Hexadecimal) ₁₆
(00) ₁₀	(0000) ₂	(00) ₈	(0) ₁₆
(01) ₁₀	(0001) ₂	(01) ₈	(1) ₁₆
(02) ₁₀	(0010) ₂	(02) ₈	(2) ₁₆
$(03)_{10}$	(0011) ₂	(03) ₈	(3) ₁₆
(04) ₁₀	(0100) ₂	(04) ₈	(4) ₁₆
(05) ₁₀	(0101) ₂	(05) ₈	(5) ₁₆
(06) ₁₀	(0110) ₂	(06) ₈	(6) ₁₆
(07) ₁₀	(0111) ₂	(07) ₈	(7) ₁₆
(08) ₁₀	(1000) ₂	(10) ₈	(8) ₁₆
(09) ₁₀	(1001) ₂	(11) ₈	(9) ₁₆
(10) ₁₀	(1010) ₂	(12) ₈	(A) ₁₆
(11) ₁₀	(1011) ₂	(13) ₈	(B) ₁₆
(12) ₁₀	(1100) ₂	(14) ₈	(C) ₁₆
(13) ₁₀	(1101) ₂	(15) ₈	(D) ₁₆
(14) ₁₀	(1110) ₂	(16) ₈	(E) ₁₆
(15) ₁₀	(1111) ₂	(17) ₈	(F) ₁₆

- Every 4 bits \rightarrow 1 hex digit -

Class Exercise 2.1

Student	ID:
Name:	


Date:

• Represent $(255)_{10}$ in binary, octal, and hexadecimal:

-	τo							
Binary (base 2)	0 1							
Octal (base 8)	0 1	2 3	4 5	67				
Decimal (base 10)	0 1	2 3	4 5	67	89			
Hexadecimal (base 16) 0 1	2 3	4 5	67	89	ΑB	C D E	F

Addition of "Unsigned" Integers

Addition of 1-bit unsigned numbers:

- To add multiple-bit numbers:
 - We add bit pairs starting from the low-order (right) end, propagating carries toward the high-order (left) end.

+

- The carry-out from a bit pair becomes the carry-in to the next bit pair.
- The carry-in must be added to a bit pair in generating the sum and carry-in 1 carry-out at that position.
- For example,

00000001

Outline

- Number Representation
 - Number Systems
 - Integers
 - Unsigned Integer
 - Signed Integer
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
- Character Representation
 - ASCII

"Signed" Integer Representation (1/3)

- To represent both positive and negative numbers, we need different systems to represent signed integer.
- In <u>written</u> decimal system, a signed integer is usually represented by a "+" or "-" <u>sign</u> and followed by the <u>magnitude</u>.
 - E.g. 73, 215, +349
- In binary system, we have three common systems:
 - ① Sign-and-magnitude
 - ② 1's-complement
 - ③ 2's-complement

"Signed" Integer Representation (2/3)

The leftmost bit (MSB) decides the sign (0: "+", 1: "-").

Positive values are <u>identical</u> in all the three systems:

• *Rule*: Treating the rest bits as an unsigned integer

> E.g., +3 is represented by 0011.

Negative values have <u>different</u> representations:

- ① **Sign-and-magnitude** (MSB: sign, other bits: magnitude)
 - Rule: Changing the MSB from 0 to 1
 ► E.g. -3 is represented by 1011.
- ② 1's-complement 1's: 0011 July • *Rule*: Inverting each bit of the positive number 1100 2's r1: \geq E.g. –3 is obtained by flipping each bit in 0011 to yield 1100. 10000 -) 0011 ③ 2's-complement 1101 • *Rule 1*: Subtracting the positive number from the unsigned 2^n 2's r2: 1100 • *Rule 2*: Adding 1 to 1's-complement of that negative number +) 0001

1101

► E.g. –3 is represented by 1101 when applying either rule. CSCI2510 Lec02: Number and Character Representation 2023-24 T1

"Signed" Integer Representation (3/3)

В	Valu	ies Represented in Deci	imal				
b ₃ b ₂ b ₁ b ₀	Sign-and-magnitude	1's-complement	2's-complement				
0111	+ 7	+ 7	+ 7				
0110	+ 6	+ 6	+ 6				
0101	+ 5	+ 5	+ 5				
0100	+ 4	+ 4	+ 4				
0011	+ 3	+ 3	+ 3				
0010	+ 2	+ 2	+ 2				
0001	+ 1	+ 1	+ 1				
0000	+ 0	+ 0	+ 0				
1000	- 0	- 7	- 8				
1001	- 1	- 6	- 7				
1010	- 2	- 5	- 6				
1011	- 3	- 4	- 5				
1100	- 4	- 3	- 4				
1101	- 5	- 2	- 3				
1110	- 6	- 1	- 2				
1111	- 7	- 0	- 1				

Class Exercise 2.2

- Question: Consider the decimal number 56. Please use 8 bits to represent it in:
 - Sign-and-magnitude: _____
 - 1's-complement:
 - 2's-complement:
- Question: Consider the 8-bit vector 10110101, what is its decimal value when interpreted as:
 - Sign-and-magnitude: _____
 - 1's-complement:
 - 2's-complement:

Arithmetic of "Signed" Integers

- The three signed integer representation systems differ only in the way of representing negative values.
- Their relative merits on performing arithmetic operations can be summarized as follows:
 - Sign-and-magnitude: the simplest representation, but it is also the most awkward for addition/subtraction operations.
 - 1's-complement: somewhat better than the sign-andmagnitude system.
 - 2's-complement: specially designed to be efficient in performing addition and subtraction operations.
 - This is also why the 2's-complement system is the one most often used in modern computers.

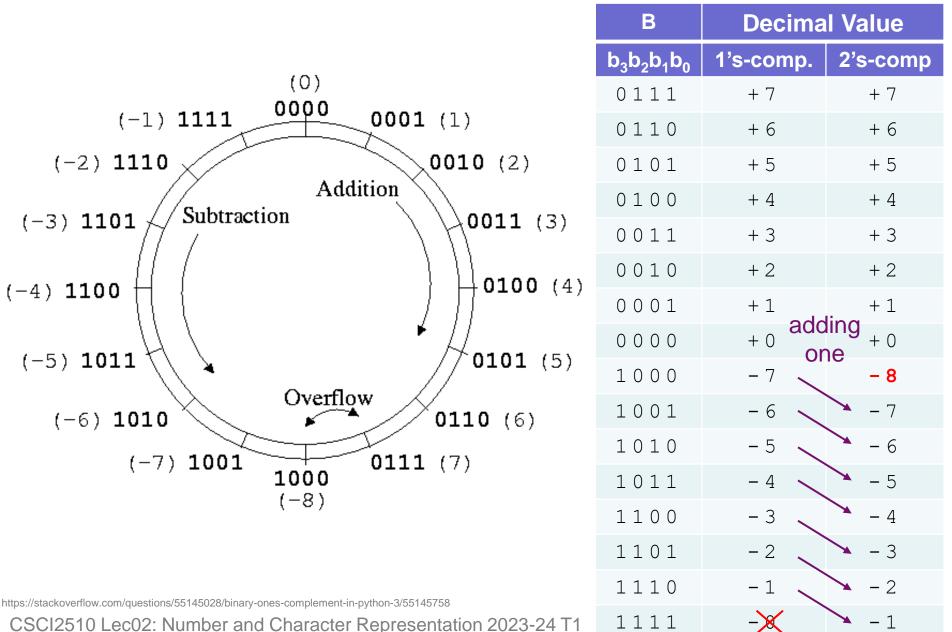
Why 2's-complement Arithmetic?

- First consider adding +7 to -3:
 - What if we perform this addition by adding bit pairs from right to left (as what we did for n-bit unsigned numbers)?

- If the leftmost carry-out bit is ignored, we get $(+4)_{10}$.
- Rules for *n*-bit signed number addition/subtraction:

-X+Y

- Add their n-bit 2's-complement representations from right to left
- Ignore the carry-out bit at the MSB position
- -X-Y
 - Interpret as, and perform X + (-Y)
- Note: The sum should be in the range of $-2^{n-1} \sim (2^{n-1}-1)$


Class Exercise 2.3

• Using 4-bit 2's-complement number to calculate:

2's-Complement Number Wheel

Overflow in Integer Arithmetic

- **Overflow**: The result of an arithmetic operation does not fall within the representable range.
 - In **Unsigned** Number Arithmetic:
 - *Rule*: A <u>carry-out of 1</u> from the MSB-bit always indicates an overflow.
 - E.g. (1111)₂ + (0001)₂ = (<u>1</u> 0000)₂ ← overflowed
 - E.g. (0111)₂ + (0001)₂ = (**0** 1000)₂ ← *no overflow*
 - In 2's-complement Signed Number Arithmetic:
 - The carry-out bit from the sign-bit is not an indicator of overflow.
 - $\text{ E.g. } (+7)_{10} + (+4)_{10} = (0111)_2 + (0100)_2 = (\underline{0} \ 1011)_2 = (-5)_{10}$
 - E.g. $(-4)_{10} + (-6)_{10} = (1100)_2 + (1010)_2 = (\underline{1} \ 0110)_2 = (+6)_{10}$
 - Observation: Addition of opposite sign numbers <u>never</u> causes overflow. - E.g. $(+7)_{10} + (-6)_{10} = (0111)_2 + (1010)_2 = (0001)_2 = (+1)_{10} \leftarrow no \ overflow$
 - *Rule*: If the two numbers are the same sign and the result is the opposite sign, we say that an overflow has occurred.
 - E.g. $(+7)_{10} + (+4)_{10} = (0111)_2 + (0100)_2 = (1011)_2 = (-5)_{10} \leftarrow overflowed$ - E.g. $(-4)_{10} + (-6)_{10} = (1100)_2 + (1010)_2 = (0110)_2 = (+6)_{10} \leftarrow overflowed$

Sign Extension

- We often need to represent a value given in a certain number of bits by using a larger number of bits.
 - That is, how to represent a signed integer by using a larger number of bits?
- Sign Extension: Simply repeat the "sign bit" <u>as many</u> <u>digits as needed</u> to the left. (*Note: It can be applied to both 1's and 2's-complement, but not sign-and-magnitude*)
 - Positive Number: Add 0's to the left-hand-side
 - E.g. 0111 → 0000 0111
 - Negative Number: Add 1's to the left-hand-side
 - E.g. 1010 → 1111 1010

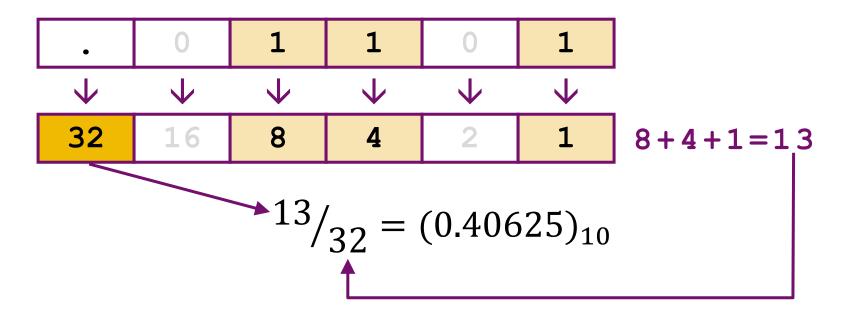
Example: Representing -2~+1 with 8 bits by 2's-complement

$B=b_{7}b_{6}.$	b ₀	2's complement
000000	0 1	+ 1
000000	0 0	+ 0
111111	1 0	- 2
111111	1 1	- 1

Outline

- Number Representation
 - Number Systems
 - Integers
 - Unsigned Integer
 - Signed Integer
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
- Character Representation
 ASCII

Unsigned Binary Fraction


- Consider a *n*-bit unsigned binary fraction: $B = (0. b_{-1}b_{-2} \dots b_{-n})_2$ where $b_{-i} = 0$ or 1 (binary number) for $1 \le i \le n$
- This vector can represent the value for an <u>unsigned</u> <u>binary fraction</u> F(B), where $F(B) = b_{-1} \times 2^{-1} + b_{-2} \times 2^{-2} + \dots + b_{-n} \times 2^{-n}$
- The range of F(B) is $0 \le F(B) \le 1 - 2^{-n}$ • Why? Geometric Series $s_n = \sum_{i=1}^n a_i r^{i-1} = a_1 \left(\frac{1 - r^n}{1 - r}\right)$ $0 \le F(B) \approx +1.0, \text{ for a large } n$

Binary Fraction to Decimal Fraction

- What is the binary fraction (0.01101)₂ in decimal ?
- Method 1:

 $(0.01101)_2 = 2^{-2} + 2^{-3} + 2^{-5} = (0.40625)_{10}$

• Method 2:

Decimal Fraction to Binary Fraction

- What is the decimal fraction $(0.6875)_{10}$ in binary?
 - $\begin{array}{rcl} 0.6875 & * & 2 & = & 1.3750 & \rightarrow & 0.1???_{2} \\ 0.3750 & * & 2 & = & 0.7500 & \rightarrow & 0.10??_{2} \\ 0.7500 & * & 2 & = & 1.5000 & \rightarrow & 0.101?_{2} \\ 0.5000 & * & 2 & = & 1.0000 & \rightarrow & 0.1011_{2} \\ 0.0000 & * & 2 & = & 0 & \rightarrow & \text{End} \end{array}$
- Answer: (0.1011)₂

Why? Let's have an analogy in decimal:

$$0.6875 * 10 = 6.875 \rightarrow (0.6??)_{10}$$

 $0.8750 * 10 = 8.7500 \rightarrow (0.68??)_{10}$

Class Exercise 2.4

- What is the decimal fraction $(0.1)_{10}$ in binary ?
- Answer:

What did we learn so far?

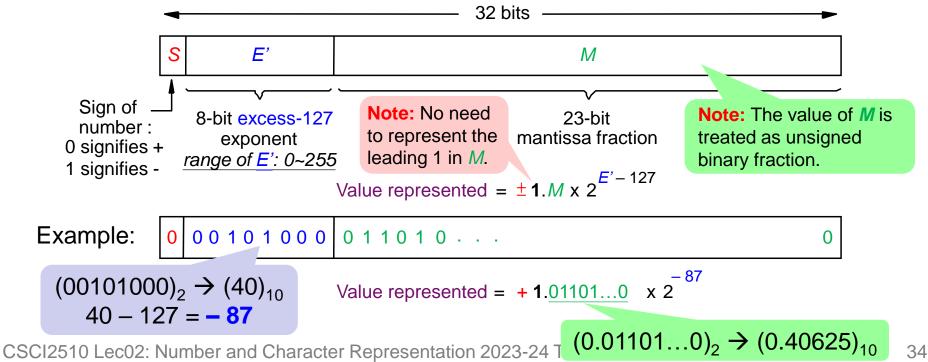
- On one hand :
 - Some decimal fractions (e.g., (0.1)₁₀) will produce infinite binary fraction expansions.
 - A *n*-bit unsigned fraction can only represent values in the range of $0 \sim 1 2^{-n}$ and cannot represent negative values.
 - The position of the binary point in a floating-point number varies (that's way called floating point!).
 0.232 * 10⁴ = 2.320000 * 10³ = 23.20000 * 10² = ...

• On the other hand:

- A *n*-bit signed integer in 2's-complement form can only represent values in the range of $-2^{(n-1)} \sim 2^{(n-1)} 1$.
- We need a unique representation (form) that can
 - ① Represent the sign, and the position of the floating point.
 - ② Represent very large integers and very small fractions.

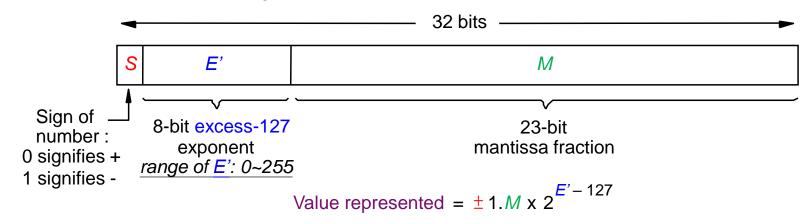
Outline

- Number Representation
 - Number Systems
 - Integers
 - Unsigned Integer
 - Signed Integer
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
- Character Representation
 ASCII


Floating Point Number Representation

- In decimal scientific notation, numbers are written as : + 6.0247×10^{23} , + 3.7291×10^{-27} , - 7.3000×10^{-14} , ...
- The same approach can be used to represent binary floating-point numbers (using 2 as the base) by:
 - Sign: A sign for the number
 - Mantissa: Some significant bits
 - Exponent: A signed scale factor (implied base of 2)
- To have a normalized representation for floating-point numbers, we should normalize Mantissa in the range $[1 \dots B)$, where *B* is the base.
 - Binary System: [1...2)
 - $(1.b_{-1}b_{-2}...b_{-n})_2$ must in the range of [1...2).

IEEE Standard 754 Single Precision


- The single precision format is a 32-bit representation.
 - The leftmost bit represents the sign, S, for the number.
 - The next 8 bits, E', represent the unsigned integer for the *excess* – 127 *exponent* (with base of 2).
 - Note: The actual signed exponent E is E'-127
 - The remaining 23 bits, M, are the significant bits.

Class Exercise 2.5

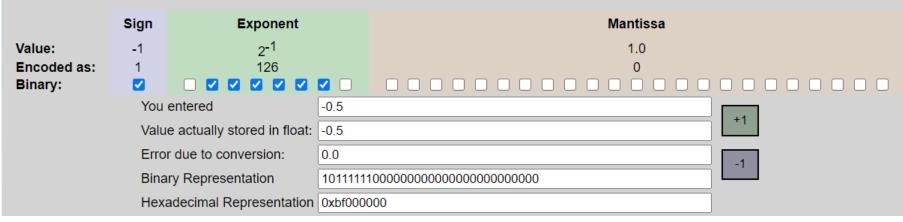
• What is the IEEE single precision number (40C0 0000)₁₆ in decimal?

• Answer:

Class Exercise 2.6

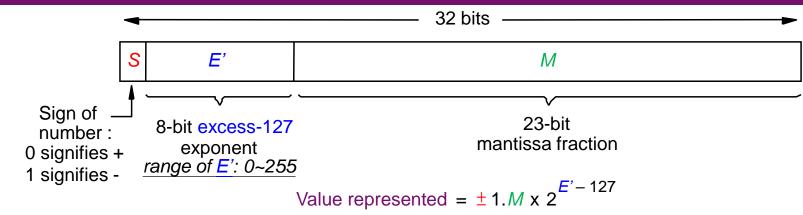
- What is (-0.5)₁₀ in the IEEE single precision binary floating point format?
- Answer:

Useful Tool



- IEEE-754 Floating Point Converter
 - https://www.h-schmidt.net/FloatConverter/IEEE754.html

IEEE 754 Converter (JavaScript), V0.22


	Sign	Exponent		Mantissa					
Value:	+1	2 ²		1.5					
Encoded as:	0	129		4194304					
Binary:									
	Decim	al representation	6.0						
	Value	actually stored in float:	6 +1						
	Error o	due to conversion:			-1				
	Binary	Representation	01000001	11000000000000000000					
	Hexad	ecimal Representation	0x40c0000	00]				

IEEE 754 Converter (JavaScript), V0.22

Special Values

- When exponent E' = 0 (all 0's) and mantissa M = 0:
 - The value 0 is represented.
- When exponent E' = 0 (all 0's) and mantissa $M \neq 0$:
 - Denormal values (i.e. very small values) are represented.
- When exponent E' = 255 (all 1's) and mantissa M = 0:
 - The value ∞ is presented.
- When exponent E' = 255 (all 1's) and mantissa $M \neq 0$:

- Not a Number (NaN) (e.g. 0/0 or $\sqrt{-1}$) is presented.

• Check this article for more information. CSCI2510 Lec02: Number and Character Representation 2023-24 T1

Revisit: (0.1)₁₀ in Binary (1/2)

• Unsigned Binary Fraction (32-bit)

 $(0.0\ 0011\ 0011\ 0011\ 0011\ 0011\ 0011\ 0011\ 0012$

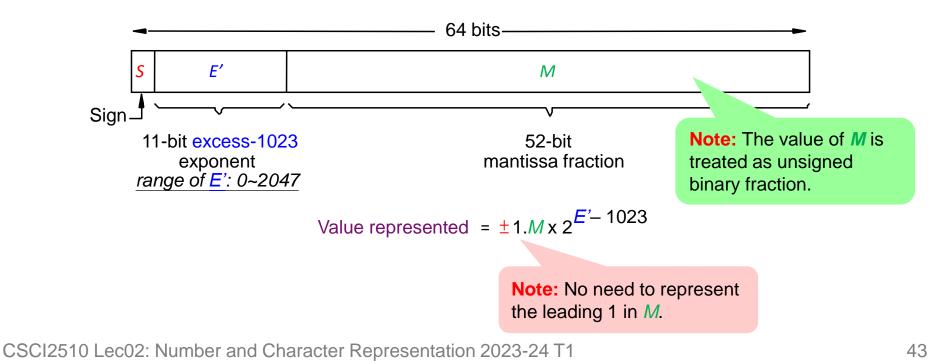
• IEEE-754 Single Precision (32-bit)

 $\begin{array}{l} 0 \ 01111011 \ 1001 \ 1001 \ 1001 \ 1001 \ 1001 \ 1001 \ 101 \\ = +(1.1001 \ 1001 \ 1001 \ 1001 \ 1001 \ 1001 \ 101)_2 \times 2^{-4} \\ = (0.000 \ 11001 \ 1001 \ 1001 \ 1001 \ 1001 \ 1001 \ 1001 \ 101)_2 \end{array}$

	Sign	Exponent		Mantissa								
Value:	+1	2-4		1.60000023841858								
Encoded as:	0	123		5033165								
Binary:												
	You e	entered	0.1									
	Value	e actually stored in float:	0.100000	00001490116119384765625								
	Error	due to conversion:	1.490116	16119384765625E-9								
	Binar	y Representation	00111101	10111001100110011001101								
	Hexa	decimal Representation	0x3dcccc	xcccd								

Revisit: (0.1)₁₀ in Binary (2/2)

Unsigned Binary Fraction • IEEE Single Precision


From To		From To	
Binary ~ Decimal		Binary V Decimal	
Enter binary number		Enter binary number	
0.0001100110011001100110011001	•	0.000110011001100110011001101	2
= Convert × Reset ta Swap Decimal number	0.1 -) 0.0999999986030161381	= Convert × Reset ta Swap Decimal number	
0.099999999986030161381		0.1000000149011611938	10
// Decimal from signed 2's complement	0.00000000013969838619	Decimal from signed 2's complement	1
N/A 10		N/A	10 //
Hex number		Hex number	
0.199999990000000AF7		0.1999999FFFFFFFF97F	10
Decimal calculation steps	0.1000000149011611938	Decimal calculation steps	
$ \begin{array}{l} (0.0001100110011001100110011001)_2 = (0 \\ \times \ 2^0) + (0 \ \times \ 2^{-1}) + (0 \ \times \ 2^{-2}) + (0 \ \times \ 2^{-3}) + (1 \ \times \ 2^{-4}) + (1 \ \times \ 2^{-5}) + (0 \ \times \ 2^{-6}) + (0 \ \times \ 2^{-7}) + (1 \ \times \ 2^{-8}) \\ + (1 \ \times \ 2^{-9}) + (0 \ \times \ 2^{-10}) + (0 \ \times \ 2^{-11}) + (1 \ \times \ 2^{-12}) \\ + (1 \ \times \ 2^{-3}) + (0 \ \times \ 2^{-14}) + (0 \ \times \ 2^{-15}) + (1 \ \times \ 2^{-16}) \\ + (1 \ \times \ 2^{-17}) + (0 \ \times \ 2^{-14}) + (0 \ \times \ 2^{-19}) + (1 \ \times \ 2^{-20}) \\ + (1 \ \times \ 2^{-27}) + (0 \ \times \ 2^{-22}) + (0 \ \times \ 2^{-23}) + (1 \ \times \ 2^{-24}) \\ + (1 \ \times \ 2^{-25}) + (0 \ \times \ 2^{-26}) + (0 \ \times \ 2^{-37}) + (1 \ \times \ 2^{-32}) \\ + (1 \ \times \ 2^{-29}) + (0 \ \times \ 2^{-30}) + (0 \ \times \ 2^{-31}) + (1 \ \times \ 2^{-32}) \\ = (0.099999999986030161381)_{10} \end{array} $	-) 0.1 0.0000000149011611938	$\begin{array}{l} (0.00011001100110011001100110110110110110$	$(1 \times 2^{-4}) + (1 \times 2^{-8}) + (1 \times 2^{-12}) + (1 \times 2^{-12}) + (1 \times 2^{-16}) + (1 \times 2^{-20}) + (1$

CSCI2510 Lec02: Number and Character Representation 2023-24 T1 https://www.rapidtables.com/convert/number/binary-to-decimal.html 42

IEEE Standard 754 Double Precision

- The double precision format is a 64-bit representation.
 - The leftmost bit represents the sign, S, for the number.
 - The next 11 bits, E', represent the unsigned integer for the excess-1023 exponent (with base of 2).
 - Note: The actual signed exponent E is E'-1023.
 - The remaining 52 bits, M, are the significant bits.

Outline

- Number Representation
 - Number Systems
 - Integers
 - Unsigned Integer
 - Signed Integer
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
- Character Representation
 - ASCII

Character Representation

- The most common encoding scheme for **characters** is ASCII (<u>A</u>merican <u>S</u>tandard <u>C</u>ode for <u>I</u>nformation <u>I</u>nterchange).
- In ASCII encoding scheme, alphanumeric characters, operators, punctuation symbols, and control characters can be represented by 7-bit codes.
 - It is convenient to use an 8-bit byte to represent a character.
 - The code occupies the low-order 7 bits with the high-order bit as 0.
- Extended ASCII encoding scheme uses 8-bit (or even more) to represent the standard 7-bit ASCII characters, plus additional characters.

ASCII Table

Dec	Bin	Hex	Char	Dec	Bin	Hex	Char	Dec	Bin	Hex	Char	Dec	Bin	Hex	Char
0	0000 0000	00	[NUL]	32	0010 0000	20	space	64	0100 0000	40	0	96	0110 0000	60	`
1	0000 0001	01	[SOH]	33	0010 0001	21	1	65	0100 0001	41	A	97	0110 0001	61	a
2	0000 0010	02	[STX]	34	0010 0010	22		66	0100 0010	42	в	98	0110 0010	62	b
3	0000 0011	03	[ETX]	35	0010 0011	23	#	67	0100 0011	43	С	99	0110 0011	63	с
4	0000 0100	04	[EOT]	36	0010 0100	24	\$	68	0100 0100	44	D	100	0110 0100	64	d
5	0000 0101	05	[ENQ]	37	0010 0101	25	ક	69	0100 0101	45	Е	101	0110 0101	65	е
6	0000 0110	06	[ACK]	38	0010 0110	26	£	70	0100 0110	46	F	102	0110 0110	66	f
7	0000 0111	07	[BEL]	39	0010 0111	27		71	0100 0111	47	G	103	0110 0111	67	g
8	0000 1000	08	[BS]	40	0010 1000	28	(72	0100 1000	48	н	104	0110 1000	68	h
9	0000 1001	09	[TAB]	41	0010 1001	29)	73	0100 1001	49	I	105	0110 1001	69	i
10	0000 1010	A 0	[LF]	42	0010 1010	2 A	*	74	0100 1010	4A	J	106	0110 1010	6A	j
11	0000 1011	0в	[VT]	43	0010 1011	2В	+	75	0100 1011	4 B	ĸ	107	0110 1011	6B	k
12	0000 1100	0C	[FF]	44	0010 1100	2C	,	76	0100 1100	4C	L	108	0110 1100	6C	1
13	0000 1101	0 D	[CR]	45	0010 1101	2D	-	77	0100 1101	4 D	М	109	0110 1101	6 D	m
14	0000 1110	0E	[SO]	46	0010 1110	2E	•	78	0100 1110	4 E	N	110	0110 1110	6E	n
15	0000 1111	0F	[SI]	47	0010 1111	2F	/	79	0100 1111	4F	0	111	0110 1111	6F	0
16	0001 0000	10	[DLE]	48	0011 0000	30	0	80	0101 0000	50	Р	112	0111 0000	70	р
17	0001 0001	11	[DC1]	49	0011 0001	31	1	81	0101 0001	51	Q	113	0111 0001	71	q
18	0001 0010	12	[DC2]	50	0011 0010	32	2	82	0101 0010	52	R	114	0111 0010	72	r
19	0001 0011	13	[DC3]	51	0011 0011	33	3	83	0101 0011	53	S	115	0111 0011	73	s
20	0001 0100	14	[DC4]	52	0011 0100	34	4	84	0101 0100	54	т	116	0111 0100	74	t
21	0001 0101	15	[NAK]	53	0011 0101	35	5	85	0101 0101	55	υ	117	0111 0101	75	u
22	0001 0110	16	[SYN]	54	0011 0110	36	6	86	0101 0110	56	v	118	0111 0110	76	v
23	0001 0111	17	[ETB]	55	0011 0111	37	7	87	0101 0111	57	W	119	0111 0111	77	W
24	0001 1000	18	[CAN]	56	0011 1000	38	8	88	0101 1000	58	х	120	0111 1000	78	x
25	0001 1001	19	[EM]	57	0011 1001	39	9	89	0101 1001	59	Y		0111 1001	79	У
26	0001 1010	1A	[SUB]	58	0011 1010	3 A	:	90	0101 1010	5 A	Z		0111 1010	7 A	Z
27	0001 1011	1 B	[ESC]	59	0011 1011	3в	;	91	0101 1011	5B	[123	0111 1011	7в	{
28	0001 1100	1C	[FS]	60	0011 1100	3C	<	92	0101 1100	5C	\	124	0111 1100	7C	I
29	0001 1101		[GS]	61	0011 1101	3D	=	93	0101 1101	5D]		0111 1101	7D	}
30	0001 1110		[RS]	62	0011 1110	3E	>	94	0101 1110	5E	^		0111 1110	7E	~
31	0001 1111	1F	[US]	63	0011 1111	3F	?	95	0101 1111	5F	_	127	0111 1111	7F	[DEL]

Extended ASCII Table

ASCII control				A	Extended ASCII													
	cha	aracters			char	acters				characters								
00	NULL	(Null character)	3	2 space	64	@	96	`		128	Ç	160	á	192	L	224	Ó	
01	SOH	(Start of Header)	3	33 !	65	Α	97	а		129	ü	161	í	193	1	225	ß	
02	STX	(Start of Text)		34 "	66	В	98	b		130	é	162	Ó	194	т	226	Ô	
03	ETX	(End of Text)		35 #	67	С	99	С		131	â	163	ú	195	F	227	Ò	
04	EOT	(End of Trans.)		86 \$	68	D	100	d		132	ä	164	ñ	196	_	228	Õ	
05	ENQ	(Enquiry)		37 %	69	E	101	е		133	à	165	Ñ	197	+ ã	229	Õ	
06	ACK	(Acknowledgement)		8 &	70	F	102	f		134	å	166	а	198	ã	230	μ	
07	BEL	(Bell)		39 '	71	G	103	g		135	Ç	167	0	199	Ã	231	þ	
08	BS	(Backspace)	10 M 10	(72	н	104	h		136	ê	168	ć	200	L	232	Þ	
09	HT	(Horizontal Tab)		1)	73	- I	105	i		137	ë	169	®	201	1	233	Ú	
10	LF	(Line feed)		2 *	74	J	106	j		138	è	170	-	202	止	234	Û	
11	VT	(Vertical Tab)		3 +	75	K	107	k		139	ï	171	1/2	203	٦Ē	235	Ù	
12	FF	(Form feed)		4,	76	L	108	1		140	Î	172	1/4	204	Ţ	236	Ý Ý	
13	CR	(Carriage return)		5 -	77	М	109	m		141	ì	173	i i	205	=	237	Ý	
14	SO	(Shift Out)		6.	78	N	110	n		142	Ä	174	«	206	÷	238	-	
15	SI	(Shift In)		7 /	79	0	111	0		143	Å	175	»	207	a	239	<i>`</i>	
16	DLE	(Data link escape)		8 0	80	Р	112	р		144	É	176		208	ð	240	=	
17	DC1	(Device control 1)		9 1	81	Q	113	q		145	æ	177		209	Ð	241	±	
18	DC2	(Device control 2)		50 2	82	R	114	r		146	Æ	178		210	Ê	242	_	
19	DC3	(Device control 3)		51 3	83	S	115	S		147	Ô	179		211	Ë	243	37/4	
20	DC4	(Device control 4)		52 4	84	т	116	t		148	ö	180	-	212	È	244	¶	
21	NAK	(Negative		53 5	85	U	117	u		149	Ò	181	Á	213	ļ	245	§	
22	SYN	(Syn etskonoovd s)idle)		64 6	86	V	118	v		150	û	182	Â	214	Í	246	÷	
23	ETB	(End of trans.		55 7	87	W	119	W		151	ù	183	À	215	Î	247	3	
24	CAN	(Chanada))		6 8	88	Х	120	X		152	ÿ	184	©	216	Ï	248	۰	
25	EM	(End of medium)		57 9	89	Y	121	У		153	Ö	185	4	217	Ч	249		
26	SUB	(Substitute)		58 :	90	Z	122	Z		154	Ü	186		218	Г	250	1.1	
27	ESC	(Escape)		; (9	91	[123	{		155	ø	187	٦	219		251	1	
28	FS	(File separator)		so <	92	1	124			156	£	188	1	220		252	3	
29	GS	(Group separator)		51 =	93	1	125	}		157	ø	189	¢	221		253	2	
30	RS	(Record separator)		62 >	94	^	126	~		158	×	190	¥	222	<u>i</u>	254		
31	US	(Unit separator)	6	3 ?	95	_				159	f	191	٦	223		255	nbsp	
127	DEL	(Delete)																

CSCI2510 Lec02: Number and Character Representation 2023-24 T1

(https://theasciicode.com.ar/) 47

Class Exercise 2.7

• Represent "Hello, CSCI2510" using ASCII code:

	Decimal	Binary
Н		
e		
1		
1		
0		
,		
С		
S		
С		
I		
2		
5		
1		
0		

Summary

- Number Representation
 - Number Systems
 - Integers
 - Unsigned Integer
 - Signed Integer
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
- Character Representation
 - ASCII